Extensions 1→N→G→Q→1 with N=C23 and Q=C5×Dic3

Direct product G=N×Q with N=C23 and Q=C5×Dic3
dρLabelID
Dic3×C22×C10480Dic3xC2^2xC10480,1163

Semidirect products G=N:Q with N=C23 and Q=C5×Dic3
extensionφ:Q→Aut NdρLabelID
C23⋊(C5×Dic3) = C10×A4⋊C4φ: C5×Dic3/C10S3 ⊆ Aut C23120C2^3:(C5xDic3)480,1022
C232(C5×Dic3) = C5×C23.7D6φ: C5×Dic3/C15C4 ⊆ Aut C231204C2^3:2(C5xDic3)480,153
C233(C5×Dic3) = C10×C6.D4φ: C5×Dic3/C30C2 ⊆ Aut C23240C2^3:3(C5xDic3)480,831

Non-split extensions G=N.Q with N=C23 and Q=C5×Dic3
extensionφ:Q→Aut NdρLabelID
C23.(C5×Dic3) = C5×A4⋊C8φ: C5×Dic3/C10S3 ⊆ Aut C231203C2^3.(C5xDic3)480,255
C23.2(C5×Dic3) = C5×C12.D4φ: C5×Dic3/C15C4 ⊆ Aut C231204C2^3.2(C5xDic3)480,152
C23.3(C5×Dic3) = C5×C12.55D4φ: C5×Dic3/C30C2 ⊆ Aut C23240C2^3.3(C5xDic3)480,149
C23.4(C5×Dic3) = C10×C4.Dic3φ: C5×Dic3/C30C2 ⊆ Aut C23240C2^3.4(C5xDic3)480,800
C23.5(C5×Dic3) = C2×C10×C3⋊C8central extension (φ=1)480C2^3.5(C5xDic3)480,799

׿
×
𝔽